Significance of early-diagenetic water-rock interactions in a modern marine siliciclastic/evaporite environment: Salina Ometepec, Baja California

2002 ◽  
Vol 114 (9) ◽  
pp. 1055-1069 ◽  
Author(s):  
Anna M. Martini ◽  
Lynn M. Walter ◽  
Timothy W. Lyons ◽  
Victoria C. Hover ◽  
John Hansen

Abstract Although marine brines are a significant component of pore waters in sedimentary basins, there are few geochemical studies of modern analogues of such systems, especially in siliciclastic settings. For these reasons, we chose the evaporite-associated siliciclastic sediments deposited in the salt flats of the Salina Ometepec, Baja California, for an integrated investigation of sediment, pore-water, and overlying brine geochemistry. Here, the detrital components include quartz, K-feldspar, plagioclase, chlorite, biotite, and smectite, and authigenic minerals are dominated by halite, gypsum, and K-rich magnesium smectite. Thermal and saline stresses on the sediments of the Salina Ometepec keep both organic and inorganic carbon concentrations in the sediments unusually low relative to other coastal marine environments. Sediment pore waters exhibit little microbial sulfate reduction, and dissolved inorganic C contents are also very low. As a result, we did not observe carbonate and sulfide mineral authigenesis in the Salina Ometepec sediments. Instead, pore-water geochemical evolution is largely controlled by evaporative concentration of seawater, evaporite-mineral dissolution and recrystallization, and diagenetic alteration of detrital aluminosilicates. Evaporite-mineral recycling affects the compositional evolution of surficial brines even before they infiltrate the sediment. Specifically, Na+ and Cl− concentrations are increased owing to halite dissolution. We see significant Br− enrichment relative to expected seawater evaporation trends in near-surface pore water, secondary to dissolution of K- and Mg salts. Because bacterial sulfate reduction is inhibited in the Salina Ometepec sediments, sulfate concentrations are more accurate indicators of the degree of evaporation than Br−, a usually conservative element during geochemical reactions. Pore waters exhibit down-core increases in dissolved Mg2+, K+, and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(H_{4}SiO_{4}^{0}\) \end{document} over the upper 1 m. Authigenic K-rich Mg-smectite formation is promoted by the concurrent processes of brine concentration, selective dissolution of K- and Mg-bearing salts, and dissolution of detrital aluminosilicates. Pore waters at a depth of 1 m have 87Sr/86Sr ratios that require input of Sr that is less radiogenic than that of Gulf of California seawater. This Sr is likely derived from weathering of detrital aluminosilicates from nearby volcaniclastic sources. These results show that significant chemical interactions among marine brines, evaporite minerals, and detrital aluminosilicates can occur relatively soon after sedimentation.

2021 ◽  
Author(s):  
Anne-Christin Melcher ◽  
Susann Henkel ◽  
Thomas Pape ◽  
Anette Meixner ◽  
Simone A. Kasemann ◽  
...  

<p>The Argentina Continental Margin represents a unique geologic setting to study interactions between bottom currents and sediment deposition as well as their impact on (bio)geochemical processes, particularly the cycling of iron (Fe). Our aim was to determine (1) how different depositional conditions control post-depositional (bio)geochemical processes and (2) how stable Fe isotopes (δ<sup>56</sup>Fe) of pore water and solid phases are affected accordingly. Furthermore, we (3) evaluated the applicability of δ<sup>56</sup>Fe of solid Fe pools as a proxy to trace past diagenetic alteration of Fe, which might be decoupled from current redox conditions. Sediments from two different depositional environments were sampled during RV SONNE expedition SO260: a site dominated by contouritic deposition on a terrace (Contourite Site) and the lower continental slope (Slope Site) dominated by hemipelagic sedimentation. Sequentially extracted sedimentary Fe [1] and δ<sup>56</sup>Fe analyses of extracts and pore water [2,3] were combined with sedimentological, radioisotope, geochemical and magnetic data. Our study presents the first sedimentary δ<sup>56</sup>Fe dataset at the Argentina Continental Margin.</p><p>The depositional conditions differed between and within both sites as evidenced by variable grain sizes, organic carbon contents and sedimentation rates. At the Contourite Site, non-steady state pore-water conditions and diagenetic overprint occurs in the post-oxic zone and the sulfate-methane transition (SMT). In contrast, pore-water profiles at the Slope Site suggest that currently steady-state conditions prevail, leading to a strong diagenetic overprint of Fe oxides at the SMT. Pore-water δ<sup>56</sup>Fe values at the Slope Site are mostly negative, which is typical for on-going microbial Fe reduction. At the Contourite Site the pore-water δ<sup>56</sup>Fe values are mostly positive and range between -0.35‰ to 1.82‰. Positive δ<sup>56</sup>Fe values are related to high sulfate reduction rates that dominate over Fe reduction in the post-oxic zone. The HS<sup>- </sup>liberated during organoclastic sulfate reduction or sulfate-mediated anaerobic oxidation of methane (AOM) reacts with Fe<sup>2+</sup> to form Fe sulfides. Hereby, light Fe isotopes are preferentially removed from the dissolved pool. The isotopically light Fe sulfides drive the acetate-leached Fe pool towards negative values. Isotopic trends were absent in other extracted Fe pools, partly due to unintended dissolution of silicate Fe masking the composition of targeted Fe oxides. Significant amounts of reactive Fe phases are preserved below the SMT and are possibly available for reduction processes, such as Fe-mediated AOM [4]. Fe<sup>2+</sup> in the methanic zone is isotopically light at both sites, which is indicative for a microbial Fe reduction process.</p><p>Our results demonstrate that depositional conditions exert a significant control on geochemical conditions and dominant (bio)geochemical processes in the sediments of both contrasting sites. We conclude that the applicability of sedimentary δ<sup>56</sup>Fe signatures as a proxy to trace diagenetic Fe overprint is limited to distinct Fe pools. The development into a useful tool depends on the refining of extraction methods or other means to analyse δ<sup>56</sup>Fe in specific sedimentary Fe phases.</p><p> </p><p>References:</p><p>[1]Poulton and Canfield, 2005. Chemical Geology 214: 209-221.<br>[2]Henkel et al., 2016. Chemical Geology 421: 93-102.<br>[3]Homoky et al., 2013. Nature Communications 4: 1-10.<br>[4]Riedinger et al., 2014. Geobiology 12: 172-181.</p>


2002 ◽  
Vol 90 (2) ◽  
Author(s):  
S. Holgersson ◽  
Yngve Albinsson

SummaryIn the post-closure period of a deep disposal facility for low- to intermediate-level radioactive waste, highly alkaline pore-fluids chemically equilibrated with cementious components of the engineered barriers will migrate into the surroundings. Primary minerals in the host rock could dissolve and secondary calcium silicate hydrate (CSH) phases might be formed in the micro pore system of the rock and change the available porosity for radionuclides and hence the permeability. Since the retardation of radionuclides in the host rock depends on sorption and matrix diffusion, the study of the mineral reactions is of importance. Experiments with diffusion of HTO and synthetic cementitious pore-waters through 1 cm thick discs of Äspö diorite have been made in a nitrogen-flushed glovebox facility. Synthetic cementitious pore-waters representative of fresh and leached concrete were used. For the fresh pore-water the results show that hydroxide ion diffusion is retarded relative to HTO tracer, indicating that reactions between hydroxide and host rock take place. The result can be interpreted as hydroxide sorption in the rock.Al and Si did also accumulate on the sampling side which was attributed to mineral dissolution. For the evolved pore-water, no through-diffusion of hydroxide ions or accumulation of other elements in the sampling cell was observed during the sampling period, indicating that the through-diffusion of hydroxide is hindered by this type of pore-water.


1997 ◽  
Vol 1 (1) ◽  
pp. 19-33 ◽  
Author(s):  
J. Bloomfield

Abstract. Carbonate rocks form important aquifers in many parts of the world and in north-west Europe the Chalk is a primary source of potable water. When flushed with relatively fresh groundwaters, the Chalk may undergo significant diagenetic alteration at relatively shallow depths resulting in a physically and hydrogeochemically stratified aquifer. Diagenetic affects may have important implications for the effective exploitable thickness of the Chalk aquifer and for water quality. In order to assess the affects of diagenesis on the properties of carbonate aquifers, matrix porosity, permeability, pore water and rock chemistry profiles have been analysed for a 300 m deep borehole through the Chalk at the western end of the London Basin. An abrupt change in the matrix porosity profile at 155 mbgl indicates a change in dominant mode of historic diagenesis from mechanical compaction above 155 mbgl to predominantly pressure solution compaction below 155 mbgl. Pore water and rock chemistry profiles also change abruptly across this depth interval, suggesting that the present day hydrogeology is controlled by historic diagenetic trends. Below 155 mbgl, pore waters are relatively saline and there is no evidence for groundwater flow; above 155 mbgl pore waters are relatively fresh and geochemical evidence for incon-gruent carbonate dissolution indicates contemporary groundwater circulation. Possible physical and chemical evolution paths for the Chalk at Fair Cross are discussed. The results provide a hydrogeological context for other studies of the long-term response of carbonate aquifers to base-line changes in sea-level and pore water chemistry and also enable studies with relatively short time-frames or of localized phenomena to be placed in the broader context of the evolution of carbonate aquifers.


1996 ◽  
Vol 33 (4) ◽  
pp. 538-555 ◽  
Author(s):  
R E Gerber ◽  
K WF Howard

The Northern till is a thick (~50 m) Late Winsconsinan diamict unit that occurs throughout south-central Ontario. The till has generally been regarded as massive and uniform, with a very low vertical hydraulic conductivity. It is similar to many other till units of mid-continental North American glaciated terrain in that it is believed to inhibit recharge to underlying aquifers and afford a high degree of protection to these aquifers from surface and near-surface sources of contamination. Standard methods of estimating hydraulic conductivity (K) for the Northern till, such as laboratory testing of core samples (other studies) and rising–falling head field piezometer tests (this study and other studies), characteristically yield values on the order of 10–11 to 10–9 m/s. Typically, these values indicate advective traveltimes through the till on the order of hundreds to thousands of years. In contrast, isotopic evidence (2H, 18O, and 3H) from till pore waters indicates the presence of modern (post-1952) waters at depths of up to 50 m, suggesting either that certain facies of the till are considerably more permeable or that minor sand lenses or hydrogeologically active secondary permeability structures are locally important. In some areas, vertical flow velocities may approach 1 m/year. By comparing pore-water isotopic data from cores acquired using mud (sodium bentonite) and dry rotary methods, this study further demonstrates that representative pore-water samples can be obtained using a drilling fluid providing care is taken in preparing core samples for analysis. Key words: till, aquitard, permeability, recharge, contaminant transport, isotopes.


2018 ◽  
Vol 44 (3) ◽  
pp. 293-298
Author(s):  
Fernando R. Elorriaga-Verplancken ◽  
Patricia Meneses ◽  
Abraham Cárdenas-Llerenas ◽  
Wayne Phillips ◽  
Abel de la Torre ◽  
...  

2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. I. Poletaeva ◽  
E. N. Tirskikh ◽  
M. V. Pastukhov

AbstractThis study aimed to identify the factors responsible for the major ion composition of pore water from the bottom sediments of the Bratsk water reservoir, which is part of the largest freshwater Baikal-Angara water system. In the Bratsk reservoir, the overlying water was characterized as HCO3–Ca–Mg type with the mineralization ranging between 101.2 and 127.7 mg L−1 and pore water was characterized as HCO3–SO4–Ca, SO4–Cl–Ca–Mg and mixed water types, which had mineralization varying from 165.9 to 4608.1 mg L−1. The ionic composition of pore waters varied both along the sediment depth profile and across the water area. In pore water, the difference between the highest and lowest values was remarkably large: 5.1 times for K+, 13 times for Mg2+, 16 times for HCO3−, 20 times for Ca2+, 23 times for Na+, 80 times for SO42−, 105 times for Cl−. Such variability at different sites of the reservoir was due to the interrelation between major ion concentrations in the pore water and environmental parameters. The major factor responsible for pore water chemistry was the dissolution of sediment-forming material coming from various geochemical provinces. In the south part of the reservoir, Cl−, Na+ and SO42− concentrations may significantly increase in pore water due to the effect of subaqueous flow of highly mineralized groundwater.


2010 ◽  
Vol 168 (8-9) ◽  
pp. 1303-1330 ◽  
Author(s):  
Thierry Calmus ◽  
Carlos Pallares ◽  
René C. Maury ◽  
Alfredo Aguillón-Robles ◽  
Hervé Bellon ◽  
...  

We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


Sign in / Sign up

Export Citation Format

Share Document